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Abstract
Rival markets like rideshare services, universities,
and organ exchanges compete to attract partici-
pants, seeking to maximize their own utility at po-
tential cost to overall social welfare. Similarly,
individual participants in such multi-market sys-
tems also seek to maximize their individual util-
ity. If entry is costly, they should strategically enter
only a subset of the available markets. All of this
decision making—markets competitively adapting
their matching strategies and participants arriving,
choosing which market(s) to enter, and departing
from the system—occurs dynamically over time.
This paper provides the first analysis of equilibrium
behavior in dynamic competing matching market
systems—first from the points of view of individ-
ual participants when market policies are fixed,
and then from the points of view of markets when
agents are stochastic. When compared to single
markets running social-welfare-maximizing match-
ing policies, losses in overall social welfare in
competitive systems manifest due to both market
fragmentation and the use of non-optimal match-
ing policies. We quantify such losses and provide
policy recommendations to help alleviate them in
fielded systems.

1 Introduction
In centralized dynamic matching problems, agents arrive to
a market and are either paired with other agents or left un-
paired until they depart. A successfully matched agent re-
ceives some individual one-time utility, while the central mar-
ket accumulates utility over many matches. Examples of such
markets are myriad: online dating [Bragdon et al., 2010],
rideshare [Hall et al., 2017], organ allocation [Bertsimas et
al., 2013], online labor [Arnosti et al., 2014], housing alloca-
tion [Bloch and Cantala, 2013], job search [Das and Tsitsik-
lis, 2010], refugee placement [Jones and Teytelboym, 2017],
and general barter markets like kidney exchange [Dickerson
and Sandholm, 2015]. Many matching applications involve
two or more markets that compete in the same space for a
common set of agents who choose to enter one or more of
the competing markets based on their expected utility from

getting matched. Match.com, OkCupid, and Tinder com-
pete on matching policies (e.g., match speed, profile com-
plexity) to segment the market, while users choose to en-
ter these markets according to perceived (monetary or tem-
poral) cost and likelihood of finding a partner. Similarly,
Uber, Lyft, and Didi Chuxing compete internationally and lo-
cally via driver/rider incentives and geographic preferences.
Finally, organ exchanges compete nationally—and, increas-
ingly, internationally—to attract participants.

In this paper, we explore two complementary research
questions in a stylized model of multiple competing dy-
namic matching markets. Building on an important dy-
namic matching model introduced by Akbarpour, Gharan,
and Li 2017, Das et al. 2015 demonstrated that market frag-
mentation (where significant fractions of the population go
to different markets) can have significant social costs by re-
ducing the thickness of matching markets. This work con-
sidered models where market policies were fixed (one market
matched greedily and the other was maximally patient), and
agents arrived to one or both markets stochastically. In reality,
we expect at least some proportion of sophisticated agents to
be strategic about which market they choose to enter, and we
also expect markets to compete with each other for volume,
quality of agents, and so on.

This paper begins to address questions about the equi-
librium behavior of multi-market systems under these two
types of strategic agency. First, we analyze models where
individual market participants have agency. These partici-
pants can be of different types (short-lived or long-lived) and
may choose entrance into the market system such that their
individual utility is maximized. Different types of agents
may have different preferences, and we analyze equilibrium
behavior in both continuous (Section 3) and discrete (Sec-
tion 4) time settings. We show that even with just two
types of agents, strategic market choice can induce mar-
ket fragmentation—while there are some pooling equilibria
where all strategic agents choose the same market (which is
socially preferable), as the proportion of agents who are as-
signed to a particular market increases (these agents may be
constrained by geography or cost, for example), separating
equilibria become significantly more likely, with short-lived
agents choosing the patient market and long-lived agents the
greedy market. This is because the patient market is typi-
cally thicker, giving a higher probability of matching during



an agent’s sojourn, and short-lived agents suffer less penalty
because the market attempts to match them sooner relative to
arrival. Unfortunately, the fragmentation comes at significant
social cost in reduced thickness.

Second, in Section 5, we prescribe agency to the markets
themselves, allowing them to choose overall matching poli-
cies (defined by the frequency at which they decide to match)
strategically to maximize their overall utility. In this case, the
agents are stochastic in their choice to join one or the other
market, or to enter both markets. We quantify via best re-
sponse dynamics the social welfare loss of this competitive
marketplace under a variety of initial conditions, and com-
pare that loss to the lower bound provided by a single market
running an optimal matching policy.

Overall, our results demonstrate the serious concern of a
“race to the bottom” when multiple matching markets com-
pete. This is due to both fragmentation and the choice
of socially suboptimal matching policies by individual mar-
kets. When agents choose markets strategically, differences
in their types and utilities can lead to preferences for one
or the other markets and induce separating equilibria and
fragmented markets. Even when agents do not have market
choice, if markets can choose their matching policies, indi-
vidual markets may be incentivized to match as early as pos-
sible an inefficient fraction of the time in the race to match
more agents. The intersection of differential impact on differ-
ent types and competing matching platforms raises important
ethical issues in allocation and regulation. Such discussions
can be informed by our models. Further, our models can also
provide the foundation for future models that consider situ-
ations where both agents and markets can be strategic. Sec-
tion 6 concludes with some recommendations for policymak-
ers derived from our results.

2 Preliminaries
Akbarpour et al. 2017 show that platforms may maximize
the number of matches achieved by being patient instead
of trying to match new pairs immediately. The intuition is
that waiting for the market to become thicker can be help-
ful. However, any individual would prefer to take the earli-
est match that becomes available to them. Das et al. 2015
consider what happens when rival patient and greedy markets
compete with each other under stochastic assumptions about
individual agent behavior, and show that such market frag-
mentation can have significant social costs.

We start with a brief overview of the Akbarpour et al.
model as applied to our setting. We have two rival dynamic
matching markets. Each market runs in time interval [0, T ],
with agents arriving according to a Poisson process with rate
parameter k. The market determines whether potential bilat-
eral transactions between agents are acceptable. The proba-
bility of an acceptable transaction existing between any pair
of distinct agents is defined as p, and is independent of any
other pair of agents in the market. Each agent a remains in
the market for a sojourn s(a); the agent becomes critical im-
mediately before her sojourn ends, and this criticality time
is known to the market. An agent leaves either upon being
matched successfully by the market or upon becoming criti-

cal and remaining un-matched, at which point she perishes.
An agent a receives zero utility if she perishes, or u(a) = 0.
If she is matched, she receives a utility 1 discounted at rate δ,
or u(a) = e−δs(a).

Another critical issue is when the market tries to clear or
actively find matches. Two extremes are:
Greedy. The Greedy matching algorithm attempts to match
each entering agent immediately by selecting one of its neigh-
bors (if a neighbor exists at the time of entry) uniformly at
random. One obvious consequence of this is that the remain-
ing graph of unmatched agents at any instant is always empty.
We refer to a market running this policy as the Greedy market
or simply Greedy for the rest of the paper.
Patient. The Patient matching algorithm attempts to match
each agent only at the instant she becomes critical. As with
Greedy, if a critical agent has multiple neighbors, only one is
selected uniformly at random. We refer to a market running
the Patient policy as a Patient market or simply Patient.

The market can also choose a clearing rule that interpolates
between the Patient and Greedy clearing rules (the so-called
Patient(α) clearing rule), which allows tuning of the match-
ing rate. Specifically, a market matching with the Patient(α)
strategy draws an exponential random variable Cv with rate
parameter 1/α for each vertex v. If vertex v entering at time
t becomes critical at time tc < t + Cv , she matches at tc,
as in the Patient matching algorithm. Otherwise the vertex
matches at time t+ Cv . Note that when α→ 0 we will have
Cv

p→ 0, which corresponds to a Greedy matching algorithm.

2.1 MODEL I: Strategic Agents
Our first model considers two types of agents in terms of
length of life, short-lived and long-lived. Short-lived agents
come into the markets with a length of life Ts and long-lived
agents have a length of life Tl, where Ts < Tl. Each agent
(who is aware of her own type) decides which market to enter
upon arrival. A fraction θ of agents are short-lived and the
remaining 1 − θ fraction are long-lived. We allow a φ frac-
tion of random-choice agents (random agents) to choose ei-
ther market with 0.5 probability. The remaining 1−φ fraction
of agents are strategic. For these models, we restrict atten-
tion to models in which one Greedy and one Patient market
compete. The action space for agents is the market choice,
B = {Greedy, Patient}. We want to analyze the equilib-
rium strategies of strategic agents given the setting of θ and φ.
Here, the market choice becomes a tradeoff between match-
ing probability and utility. That is, entering a Patient market
may give an agent a higher matching probability but lower
utility as the agent has a higher expected sojourn time; in con-
trast, immediate matching from a Greedy market provides a
higher utility but may lower the probability of matching since
the market is not thick enough.

We investigate the behavior of strategic agents in the two-
market MODEL I in both continuous time (Section 3) and dis-
crete time (Section 4) models.

2.2 MODEL II: Strategic Markets
Our second, complementary, direction is to model the situa-
tion where agent behaviors are stochastic, but markets them-
selves make strategic decisions. We define each market’s



utility as the aggregate utility of the (non-strategic) agents
it matches (it is reasonable to assume that the market can
capture some fraction of this utility). We follow the model
of Das et al 2015 for assigning agents to one or both of the
two competing markets. A γ1 fraction of agents are assigned
to both markets; the market which successfully matches the
agent first will receive utility from the match. The remaining
agents are only assigned to one market: a γ2 fraction enter the
first market, while a 1− γ2 fraction enter the second market.

The action chosen by a market is its choice of market-
clearing rule, parameterized by the matching rate α described
above. The market-clearing rule choice involves a tradeoff:
if Market 1 chooses a fast matching rate, it will match more
agents assigned to both markets, but will match fewer agents
which are only assigned to Market 1. The relative market
sizes, parameterized by γ1 and γ2 are factors in the optimal
choice. We investigate equilibrium behavior via simulation
of two markets in MODEL II in Section 5.

3 Strategic Agents in Continuous Time
We consider two markets operating simultaneously, one
Greedy and one Patient. For simplicity, we assume that
lengths of life Ts and Tl for short-lived and long-lived agents
are constants that are fixed across the same type of agents.1

The markets run in the continuous-time interval [0, T ].
Agents arrive according to a Poisson process with rate pa-
rameter k ≥ 1 (k = 100 in our simulations). The type of
each arriving agent is stochastic; with probability θ, the arriv-
ing agent is a short-lived type; and with probability 1− θ, she
is a long-lived type. Parameter φ controls whether an agent
is random or strategic, that is, with probability φ, she is a
random agent and w.p. 1 − φ she is a strategic agent. Upon
arrival, the agent needs to decide which market to enter. Ran-
dom agents choose a market uniformly at random and strate-
gic agents choose a market based on comparing the expected
utilities of entering each market.

We first consider agents entering the Greedy market. As
the Greedy market matches agents immediately upon en-
try, the probability of an agent having acceptable transac-
tions immediately after entering at any time t is mg,e(t) =
(1−(1−p)Zg,t−1), where Zg,t represents the size of the pool
under the Greedy matching policy at time t. To be noticed, t
here is an infinitesimal time. Since entry occurs stochastically
in continuous time, only one agent enters exactly at time t.
Therefore, as long as there exist any acceptable transactions,
the entering agent will be matched immediately. Once the
moment of entry has passed, an agent can only be matched
at the point in time when some other agent enters the market.
The probability of an agent who was not matched at entry
having an acceptable transaction at the time of entry of some
other agent is mg,s(t) = (1−(1−p)Zg,t−1)

Zg,t−1 . Denote the proba-
bility of an agent entering the Greedy market at any point in
time t as P [Entrytg]. Thus, the expected utility of an agent

1We also ran experiments where Ts and Tl are sampled from two
exponential distributions with different rate parameters λs and λl,
truncated so that Ts < 1 and Tl ≥ 1. The results were qualitatively
very similar to the case where Ts and Tl are constants.

for choosing the Greedy market Utype,g(t) at time t given she
knows her type is

Utype,g(t) =mg,e(t) +
∫ Ttype
0 P [Entrytg ]

mg,s(t+ s(a))e−δs(a)ds(a),
(1)

where type ∈ {short, long}.
Now consider agents entering the Patient market. The Pa-

tient market attempts to match agents at the instant they be-
come critical. The probability of an agent having acceptable
transactions during their stay (before perishing) at any time
t is mp,s(t) = Λp,t

(1−(1−p)Zp,t−1)
Zp,t−1 , where Λp,t is the rate

of perishing in the Patient market and Zp,t is the size of the
pool under the Patient matching policy at time t. The proba-
bility of an agent having acceptable transactions at the instant
she becomes critical ismp,c(t) = (1−(1−p)Zp,t−1).Denote
the probability that some agent in the Patient market becomes
critical at any time t as P [Exittp]. The expected utility of an
agent for choosing patient market Utype,p(t) at time t given
her type is
Utype,p(t) =

∫ Ttype−ε
0 P [Exittp]mp,s(t+ s(a))

e−δs(a)ds(a) +mp,c(t+ Ttype)e
−δTtype ,

(2)

where ε is an infinitesimal amount of time right before an
agent perishes and type ∈ {short, long}.

Equations (1) and (2) clarify the tradeoffs agents face. In
general, while the patient market may give a higher proba-
bility of finding a match, the fact that an agent typically has
to wait longer diminishes her expected utility. Since agents
start with the same utility and it diminishes at the same rate,
this means that short-lived agents will have a relatively higher
preference for the Patient market compared with long-lived
agents (who have to wait longer until the point in time when
they are most likely to get matched, the time of criticality,
in the patient market). Since there are positive externalities
to entering a market and making it thicker, we may expect
that the market-choice game may have both pooling and sep-
arating equilibria, where either both types of agents enter one
market or short-lived agents enter the Patient market while
long-lived agents enter the Greedy market.

Since the equations above do not admit closed-form solu-
tions, we use empirical game-theoretic analysis to find equi-
libria in the game with strategic market-choice for each type.
The strategy space is B = {Greedy, Patient}. For different
values of θ and φ, we compute the utilities of strategic short-
lived and long-lived agents if they choose the Greedy market
or the Patient market respectively using Monte Carlo simu-
lations holding the strategies of the other agents fixed, and
ascertain whether or not pooling or separating equilibria exist
in different regions of the θ, φ space. As conjectured, we do
see an overall pattern of pooling and separating equilibria in
different regions. Figure 1a shows an example of the results
when the fraction of random agents is φ = 0.4. These results
can be broken up into three regions: The red region represents
pooling equilibria where both long-type and short-type strate-
gic agents choose the Greedy market; long-lived and random
agents are the majority in this region, thus the Greedy market
can be thick enough.2 The yellow region represents pooling

2Note that, in this region, both types of agents choosing the Pa-
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Figure 1: Results of continuous market for p = 0.02, δ = 0.05, Ts = 2, Tl = 3. Long:Greedy (Short:Greedy) and Long:Patient
(Short:Patient) show the expected utility of a strategic long-type (short-type) agent if she chooses Greedy and Patient respectively.

equilibria where both types choose the Patient market; in this
range of settings, we have more short-lived agents and the
Greedy market is not thick enough as the short-lived agents
perish too soon.3 In the blue region, we find a separating
equilibrium exists: strategic short-lived types choose the Pa-
tient market (Us,p > Us,g) and long-lived types choose the
Greedy market (Ul,g > Ul,p).

Figure 1b shows overall social welfare in the Competing
system with a single Greedy market and a single Patient mar-
ket under different settings of θ when the fraction of random
agents φ = 0.4. We can see the market fragmentation caused
by competition, separating equilibria (θ ∈ [0.4, 0.6]), lowers
the social welfare when compared to a single market. This
pattern holds across the whole range of φ.

Finally Figure 1c shows the range of separating and pool-
ing equilibria as a function of φ, the proportion of random
agents. As the proportion of random agents increases, the
portion of the θ domain covered by separating equilibria in-
creases, since the thicknesses of the two markets are deter-
mined almost entirely exogenously, and the main considera-
tion is an optimization of utility rather than equilibrium con-
siderations of what other strategic agents are doing.

4 Strategic Agents in Discrete Time
While the model of Section 3 uses essentially the same mod-
els of utility as prior work, we are restricted by the lack of an-
alytical tractability. We now consider a discrete time version
of MODEL I that captures the same basic intuitions and can
be used more directly in modeling strategic market choice.
We believe this model is more amenable for further work on
these questions. Now, agents enter the market in “batches”,
that is, k ≥ 1 agents enter the Competing market at each time
step t. Short-lived agents live for Ts time steps and long-
lived agents live for Tl time steps (Tl > Ts), where Ts and
Tl are fixed constants for each type. At each time step t, each
market operates as follows: o1: agents enter → o2: market
clears→ o3: agents perish. Random agents choose a market
to enter uniformly at random and strategic agents choose a

tient market is also an equilibrium, albeit one with overall lower
social welfare.

3Similarly, in this region, both types of agents choosing the
Greedy market is also an equilibrium, lower in social welfare than
the Patient pooling equilibrium.

market based on comparing the expected utilities of entering
each market.

We first analyze the utility of agents choosing the Greedy
market. As the Greedy policy will match agents immedi-
ately after they enter the market, the probability of an agent
having acceptable transactions immediately after entering is
mg,e(t) = (1−(1−p)Zg,t−1), where Zg,t represents the size
of the pool under the Greedy matching policy at time t. The
market will run a maximum matching algorithm at each time
step during o2 as k ≥ 1 agents enter the market at the same
time. This means that agents may be unmatched even if they
have potential acceptable transactions. We define the proba-
bility of being matched in the maximum matching given the
agent has acceptable transactions as χg(t) in the Greedy mar-
ket at time t. The probability of an agent having acceptable
transactions when they stay in the market (that is, not at their
time-step of entry) at time t is mg,s(t) = (1 − (1 − p)kg,t),
where kg,t is the number of agents entering to the Greedy pool
at time t. Thus, the expected utility of an agent for choosing
Greedy market Utype,g at time t given she knows her type is
Utype,g(t) = mg,e(t)χg(t) + (1−mg,e(t)χg(t))[

e−δmg,s(t+ 1)χg(t+ 1)+

∑Ttype−1

s(a)=2
e−δs(a)mg,s(t+ s(a))χg(t+ s(a))

∏s(a)−1
j=1 (1−mg,s(t+ j)χg(t+ j)

]
,

(3)
where type ∈ {short, long} and Ttype ≥ 3. We
have two special cases, where Utype,g(t) =
mg,e(t)χg(t) when Ttype = 1; and when Ttype = 2,
Utype,g(t) = mg,e(t)χg(t) + (1 − mg,e(t)χg(t))mg,s(t +
1)χg(t+ 1)e−δ.

We next consider the expected utility of agents choosing
the Patient market. The Patient market will match agents only
at the instant they become critical. The probability of an agent
having acceptable transactions when they stay in the Patient
market at each time step t is mp,s(t) = (1 − (1 − p)Λp,t),
where Λp,t is the number of agents becoming critical in the
Patient market at time t. As there may be more than one agent
becoming critical at each time t, the Patient market will also
run a maximum matching at o2. We define the probability
of being matched in the maximum matching given the agent
has acceptable transactions as χp(t). The probability of an



agent having acceptable transactions when she is critical is
mp,c(t) = (1 − (1 − p)Zp,t−1), where Zp,t is the size of
the pool under the Patient matching policy at time t. Thus,
the expected utility of an agent for choosing Patient market
Utype,p at time t given she knows her type is
Utype,p(t) = mp,s(t)χp(t)+[∑Ttype−2

s(a)=1
e−δs(a)mp,s(t+ s(a))χp(t+ s(a))

∏s(a)−1
j=0 (1−mp,s(t+ j)χp(t+ j))

]
+

∏Ttype−2

j=0 (1−mp,s(t+ j)χp(t+ j))

mp,c(t+ Ttype − 1)χp(t+ Ttype − 1)e−δ(Ttype−1),
(4)

where type ∈ {short, long} and Ttype ≥ 3. We also have
two special cases, where Utype,p(t) = mp,c(t)xp(t) when
Ttype = 1; and when Ttype = 2, Utype,p(t) =
mp,s(t)χp(t) + (1−mp,s(t)χp(t))mp,c(t+ 1)χp(t+ 1)e−δ.

At any time t ∈ [0, T ], Zg,t, Zp,t represent the sizes of the
pools under the Greedy and Patient matching policies, respec-
tively. The Markov chain on Z·,t has a unique stationary dis-
tribution under either of those policies. Let πg, πp : N→ R+

be the unique stationary distributions of the Markov chain
on Zg,t, Zp,t, respectively, and let ξg := EZg∼πg [Zg], ξp :=
EZp∼πp [Zp] be the expected sizes of the pool under the sta-
tionary distribution under Greedy and Patient. After mixing,
we represent the expected sizes of the pools at any time as
ξg, ξp respectively. Similarly, kg,t,Λp,t, χg(t) and χp(t) also
can be represented by expected values kg,Λp, χg and χp.
We use Monte Carlo simulations to estimate ξg, ξp, kg,Λp, χg
and χp respectively. This then allows us to numerically com-
pute the expected utilities in Equation (3) and (4) and derive
the equilibria for different parameter settings.

Due to space limitations, we defer the results of the dis-
crete model to a longer version of this paper. The results are
qualitatively very similar to those from the continuous-time
model, but the additional analytical tractability of the model
presented here makes it promising for future development of
models of competing markets.

5 Strategic Markets
In the previous two sections, we assumed all markets oper-
ated with fixed matching policies, and strategic agents en-
tered that system in a way that maximized their individual
expected utility. Here, under MODEL II, we prescribe agency
onto the markets themselves, allowing them to strategically
adjust their matching policies under best response dynamics
to maximize their expected aggregate utility. We investigate
equilibrium behavior in this model, and measure overall so-
cial welfare loss relative to a single-market baseline.

5.1 Experimental Setup
We are interested in modeling the behavior of a two-market
system where the markets respond to each other under best
response dynamics. Formally, at any time period, one market
observes the matching rate of its competitor and then chooses,
for the next time period, its own matching rate that will yield

maximum payoff for perpetuity,4 even though the market will
change its best response within a short span of time TR.
Best response dynamics have been shown to mimic many set-
tings where agents operate reactively or with bounded exper-
tise [Weibull, 1995], and can be used in some cases to find
equilibria [Monderer and Shapley, 1996].

We simulated the long-term utilities for two markets M1

and M2 with Patient(α1) and Patient(α2) matching policies,
respectively, for (α1, α2) ∈ R≥0 × R≥0, for T = 250 peri-
ods, and 100 trials. We estimated the best response functions
BR1 and BR2 for markets M1 and M2, respectively by sim-
ulating two markets with overlaps γ1 ∈ {0.1, 0.2, . . . , 0.9}
over a grid of patience parameters α1, α2. As a reminder,
higher values of α correspond to more patience—i.e., match-
ing less frequently—and higher values of γ1 indicate higher
overlap—i.e., more agents entering both markets.

We assumed the markets have bounded rationality in their
computations of best response functions. From the set S of all
Monte Carlo simulations, we took X = 2500 bootstrap sam-
ples of size n = 50, {S′i}Xi=1 where S′i ⊂ S. Each bootstrap
sample represents simulations that a boundedly rational mar-
ket would run. Thus, given a single bootstrap sample S′i ⊂ S:

BRi(α1) = arg maxα2 Es∈S′i [uM2
(α1, α2)]

BRi(α2) = arg maxα1 Es∈S′i [uM1
(α1, α2)]

Under best response dynamics, the matching rate will now
change over time, so we let α1

t and α2
t denote the matching

rates at time t of market M1 and M2, respectively. We iter-
ated best responses until convergence or cycles occurred over
initial conditions of α1

0, α
2
0 values.

5.2 Experimental Results
In general, we observe two main phenomena for the best
response dynamics. First, we observe convergence to the
Patient strategy under appropriate initial conditions (α1

0, α
2
0)

for any constituent in the competing market system. Sec-
ond, for markets with sufficient overlap, and sufficiently
low initial values of (α1, α2), we observe convergence to
a (Greedy,Greedy) equilibrium or (α1, α2) parameters very
close to (Greedy,Greedy). No other phenomena occur in
more than 5% of bootstrap samples.

To simplify the description of results, we refer to conver-
gence to (Greedy,Greedy), or cycles or equilibria involving
solely 0 ≤ α{1,2} ≤ 1/100, as fast matching. For the param-
eter range chosen for the simulations (specifically d = 1),
0 < α{1,2} ≤ 1/100 rarely impacts the matching choice.
Furthermore, the social welfare for these outcomes only dif-
fer by at most 0.3%. We describe the notable effects of the
parameter choices on best response dynamics below.
Market overlap. The impact of the market overlap γ1 on the
best response dynamics can be characterized by the effect on
the range of initial matching rates (α1

0, α
2
0) which converged

to a fast matching outcome in “many” bootstrap samples—
here, we use a cutoff of 25%. Figure 2 visualizes this behavior
for increasing values of market overlap γ1.

When market overlap γ1 ≤ 0.4, less than 0.1% of bootstrap
samples converge to a fast matching outcome for any chosen

4For a formal overview of best response dynamics, see, for ex-
ample, the book by [Nisan et al., 2007].
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Figure 2: Simulation results for d = 1, k = 100, p = 0.02. γ2 denotes the fraction of vertices, not in both markets, that enter only marketM1.
The red line denotes the loss rate with a single Patient market. The green triangles denote the loss rate of a (Patient,Patient) equilibrium (an
equilibrium in essentially all bootstrap samples). The squares denote the loss rate of a (Greedy,Greedy) equilibrium and the color of squares
denotes the proportion of bootstrap samples which reach a fast matching outcome (defined in §5.2) from initial conditions (Greedy,Greedy).

initial matching rates. This is expected, as with δ = 0, a faster
matching rate increases utility uM1

ofM1 primarily whenM1

successfully matches an agent that enters both markets before
M2 can. When γ1 ∈ [0.4, 0.8], the range of initial conditions
that converged to a fast matching outcome rose to a peak at or
before γ1 = 0.7, then fell off. Surprisingly, when γ1 = 0.9,
no initial conditions converged to fast matching in more than
4.4% of bootstrap samples.
Market asymmetry. We investigate the impact of γ2, which
controls the balance of agents entering only market M1

(which occurs as γ2 → 1) or market M2 (γ2 → 0). When
γ2 ≤ 0.1, no conditions outside of fast matching converged
to fast matching in more than 25% of samples.

5.3 Welfare Loss
We now measure the impact of competition on global so-
cial welfare. As with MODEL I, we define social wel-
fare as the discounted total number of matches; here, how-
ever, we set δ = 0. As before, we compute the distri-
bution of social welfare for a range of γ1 and γ2 with re-
spect to our bootstrap samples of Monte Carlo simulations.
Figure 2 shows social welfare for outcomes (Patient,Patient)
and (Greedy,Greedy)—which approximates the loss rate of
fast matching—as well as the proportion of bootstrap sam-
ples that converge to fast matching from initial conditions
(Greedy,Greedy). Note that, just as in MODEL I, all experi-
mental outcomes are strictly worse (i.e., result in lower social
welfare) than that of a single Patient market.

As expected, when the overlap γ1 increases, the expected
loss rate decreases due to a larger network of potential
matches. However, as γ1 increases, some initial conditions
also become more likely to result in a fast matching outcome.
For example, under two equally-sized markets (γ2 = 0.5), the
Greedy loss rate of 26.9% is higher than the loss rate of 24.3%
for γ1 = 0.4, where the only outcome that occurs with mean-
ingful probability is (Patient,Patient). This additional equi-
librium occurs in 96.4% of bootstrap samples. The additional
overall welfare loss of 4.4%-5.0% incurred by a fast matching
outcome for the same initial parameters is shown in Figure 2.

We also observe the effect on social welfare of a thicker
market as market asymmetry increases; at its most extreme
(γ2 = 0 and γ2 = 1), all vertices are effectively in a single
market. As such, as γ2 moves toward its bounds, again there
are stronger network effects on social welfare.

Welfare losses arise both from matching speed and market

fragmentation. As a baseline, the loss rate that occurs from a
single Patient market—one with no competition—under the
same model parameters is 18.2%. As shown in Figure 2, all
other market conditions result in greater overall loss. In the
succeeding section we explore policy options that could help
a central planner mitigate this loss due to competition.

6 Policy Implications & Future Directions

Our results indicate that, left to themselves, matching mar-
kets that compete with each other can cause significant social
welfare losses through fragmentation (§3 and §4) and sub-
optimal matching policies (§5). Our results are a proof-of-
concept support of the “race to the bottom” seen in many real
competing matching market systems. For example, in the
US, multiple kidney exchanges compete over patient-donor
pairs and/or hospitals. Two of the largest US exchanges are
the National Kidney Registry (NKR) and the United Network
for Organ Sharing (UNOS). NKR matches in an essentially
greedy fashion. UNOS started by matching once per month,
then moved to twice per month, weekly, and now 2+ times
per week in part to reduce the “failure rate” caused by com-
petition with the fast-matching NKR. We see this behavior
replicated in our model, and can quantify social welfare loss
as well. Combinations of analytic and simulation results of
this nature have set policy in kidney exchanges before (e.g.,
Dickerson et al 2012 and Dickerson and Sandholm 2015 have
set parts of UNOS policy), and our model could help inform
this debate.

While our research can inform policy discussions, it is im-
portant to have a separate conversation about the ethics of
different regulatory and policy changes and how these can
impact different populations (for example, by better-serving
short-lived patients at the expense of long-lived ones), and
our research is not intended to be prescriptive on those is-
sues. That said, since we cannot use money directly to match
supply and demand in a matching market, the market/policy
designer’s toolkit must consider other options. For exam-
ple, in kidney exchange, one could offer increased priority
in the future on the deceased-donor waitlist (living donor kid-
ney grafts typically survive 10-15 years before another trans-
plant is needed) if they were to go to a patient market rather
than a greedy [Ashlagi and Roth, 2014; Hajaj et al., 2015;
Toulis and Parkes, 2015; Sönmez and Unver, 2017].
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